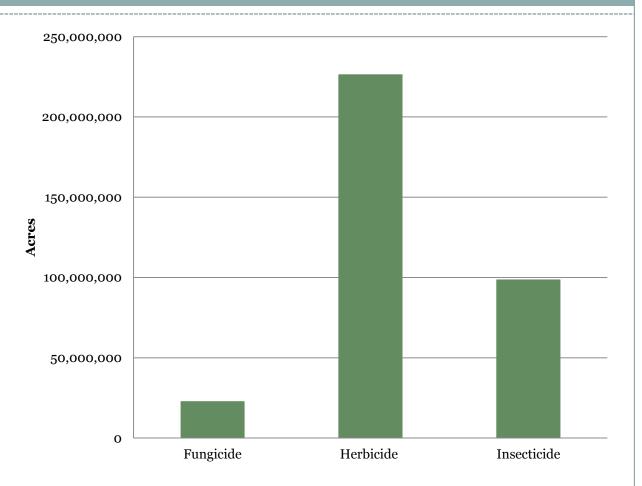
Determination of the Effects of Contaminant Mixtures on Aquatic Macrophytes

RAMONA D. SMITH¹, P. CHRIS WILSON¹, AND SAMIRA DAROUB²

¹SOIL AND WATER SCIENCE DEPARTMENT, UNIVERSITY OF FLORIDA/IFAS-INDIAN RIVER RESEARCH AND EDUCATION CENTER, FORT PIERCE, FL, USA

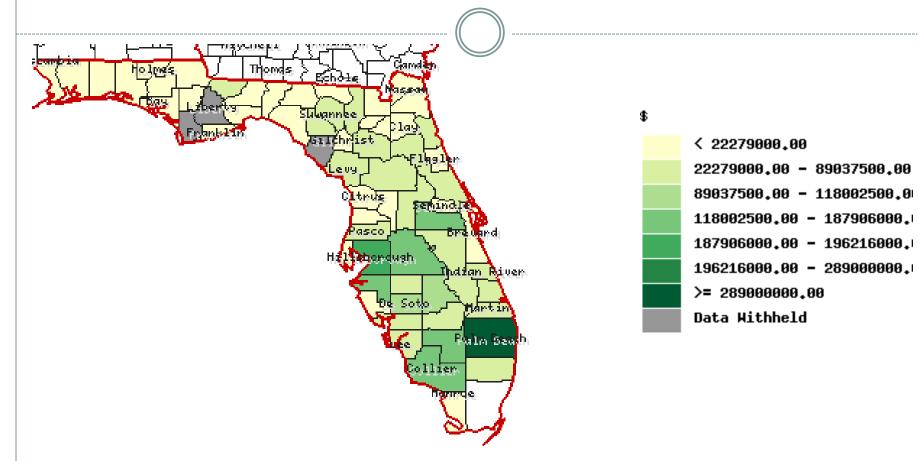
²SOIL AND WATER SCIENCE DEPARTMENT, UNIVERSITY OF FLORIDA/IFAS-EVERGLADES RESEARCH AND EDUCATION CENTER, BELLE GLADE, FL, USA

Introduction

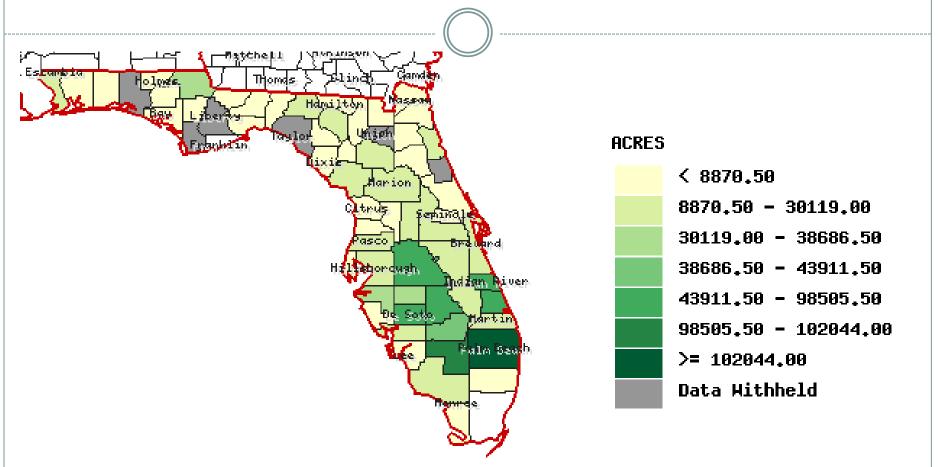


More than 600 million pounds of pesticide were used in both 2006 & 2007.

Class	Millions Pounds a.i.	% of Total
	2006	
Herbicides/PGR	407	63
Insecticides/Miticides	69	11
Fungicides	46	7
Nematicides/Fumigants	96	15
Other	25	4
Total	643	100
	2007	
Herbicides/PGR	442	65
Insecticides/Miticides	65	9
Fungicides	44	6
Nematicides/Fumigants	108	16
Other	25	4
Total	684	100


U.S. agricultural pesticide use by class – 2006 and 2007. (Fishel 2007)

Total pesticide application on US farms.



USDA/NASS estimates of pesticide application on U.S. Farms in 2007

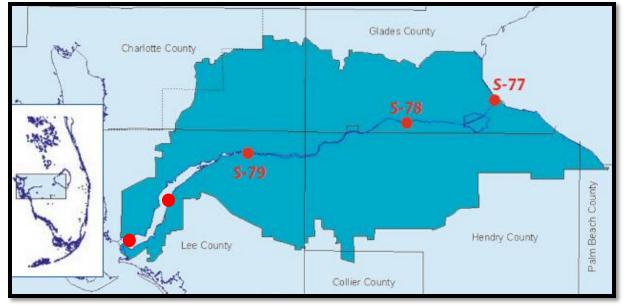
Agriculture is a valuable industry in Florida

Florida Agriculture and Pesticide Application

Florida has to balance delicate ecosystems, agriculture and urban areas

Pesticides are commonly found in surface water samples nationwide

Atrazine


Metolachlor

- Nationally: 85% of 1382 samples from 65 mixeduse streams (USGS).
- Max. concentration: 41.3 ug/L
- 3.6% > than 1 ug/L

- Nationally: 68.13% of 1386 samples from 65 mixed-use streams (USGS).
- Max. concentration: 16.4 ug/L
- 1.4% >1 ug/L

Florida Surface Waters: Caloosahatchee Study

Field sampling sites for related surface water pesticide sampling

Results of Caloosahatchee sampling December 2004-April 2006

					Number of	Detection	Highest conc.	Lowest conc.	Median	
Pesticide name	Use	Chemical type	MDL	n	detections	Frequency (%)	detected (ng/L)	detected (ng/L)		% RSD
ethoprop	insecticide	organophosphate		75	1	1.3	8.3	8.3	8.3	0.0
phorate	insecticide	organophosphate		75	0	0.0	nd	nd	nd	nd
CIAT	herbicide	triazine	7.2	75	61	81.3	181.6	3.9	21.4	106.0
CEAT	herbicide	triazine	8.4	75	56	74.7	93.8	3.8	17.1	74.4
atrazine	herbicide	triazine	8.4	75	74	98.7	2854.0	12.9	72.2	222.9
simazine	herbicide	triazine	8	75	45	60.0	121.6	2.7	9.4	139.5
acetochlor	herbicide	chloroacetanilide	5.2	75	0	0.0	nd	nd	nd	nd
alachlor	herbicide	chloroacetanilide	5.2	75	0	0.0	nd	nd	nd	nd
ametryn	herbicide	triazine		75	35	46.7	87.2	2.0	8.4	126.6
metolachlor	herbicide	chloroacetanilide	4.8	75	71	94.7	268.3	2.5	17.7	137.5
metribuzin	herbicide	triazine		75	5	6.7	46.8	9.0	12.5	77.9
p,p'-dicofol	insecticide	organochlorine		75	0	0.0	nd	nd	nd	nd
pendamethalin	herbicide	dinitroaniline	4.8	75	4	5.3	18.1	7.1	10.5	40.0
cyanazine	herbicide	triazine	6	75	0	0.0	nd	nd	nd	nd
fenamiphos	insecticide	organophosphate		75	0	0.0	nd	nd	nd	nd
ethion	insecticide	organophosphate		75	1	1.3	3.3	3.3	3.3	0.0
methoxychlor	insecticide	organochlorine		75	1	1.3	14.8	14.8	14.8	0.0
cis-permethrin	insecticide	pyrethroid		75	0	0.0	nd	nd	nd	nd
trans-permethrin	insecticide	pyrethroid		75	0	0.0	nd	nd	nd	nd
Trifluralin	herbicide	dinitroaniline	2.96	90	0	0.0	nd	nd	nd	nd
alpha-HCH	insecticide	organochlorine	8.8	90	0	0.0	nd	nd	nd	nd
diazinon	insecticide	organophosphate	33.2	90	9	10.0	17.3	12.7	15.4	12.1
gamma-HCH	insecticide	organochlorine	10.8	90	0	0.0	nd	nd	nd	nd
heptachlor	insecticide	organochlorine cyclodiene	3.8	90	2	2.2	6.2	5.2	5.7	12.8
chlorothalonil	fungicide	chloronitrile	6.4	90	10	11.1	11.3	2.5	4.0	55.3
aldrin	insecticide	organochlorine	1.64	90	1	1.1	3.1	3.1	3.1	0.0
chlorpyrifos	insecticide	organophosphate	6	90	0	0.0	nd	nd	nd	nd
malathion	insecticide	organophosphate	3.52	90	36	40.0	31.0	1.6	3.5	120.2
chlorpyrifos-oxon	insecticide	organophosphate	8.12	90	23	25.6	8.8	3.7	7.1	25.0
fipronil	insecticide	phenyl pyrazole	10	90	0	0.0	nd	nd	nd	nd
g-chlordane	insecticide	organochlorine	3.28	90	0	0.0	nd	nd	nd	nd
trans-nonachlor	insecticide	organochlorine	3.28	90	0	0.0	nd	nd	nd	nd
a-chlordane	insecticide	organochlorine	4.4	90	0	0.0	nd	nd	nd	nd
a-endosulfan	insecticide	chlorinated hydrocarbon	6.8	90	0	0.0	nd	nd	nd	nd
4,4'-DDE	insecticide	organochlorine	3.72	90	1	1.1	2.8	2.8	2.8	0.0
dieldrin	insecticide	organochlorine	0.48	90	15	16.7	1.5	0.2	0.6	54.5
cis-nonachlor	insecticide	organochlorine	2.8	90	0	0.0	nd	nd	nd	nd
4,4'-DDD	insecticide	organochlorine	18.4	90	1	1.1	26.5	26.5	26.5	0.0
b-endosulfan	insecticide	chlorinated hydrocarbon	10	90	0	0.0	nd	nd	nd	nd
4,4'-DDT	insecticide	organochlorine	0.8	90	0	0.0	nd	nd	nd	nd
endo-sulfate	insecticide	chlorinated hydrocarbon	8	90	1	1.1	3.2	3.2	3.2	0.0
Mirex	insecticide	organochlorine	0.4	90	1	1.1	0.9	0.9	0.9	0.0

Caloosahatchee River Data

Atrazine

- Detection frequency: 98.7%
- Maximum concentration detected: 2854 ng/L
- Minimum concentration detected: 12.9 ng/L
- Median concentration detected: 72.2 ng/L
- %RSD: 222.9%

Metolachlor

- Detection frequency: 94.7%
- Maximum concentration detected: 268.3 ng/L
- Minimum concentration detected: 2.5 ng/L
- Median concentration detected: 17.7 ng/L
- %RSD: 137.5%

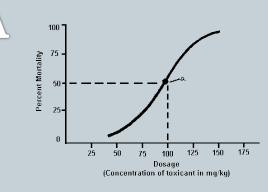
It is rare to find only one pesticide in a surface water sample

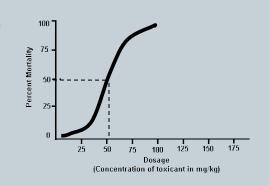
When all 42 analytes were tested:

2-12 compounds were detected (n=75)

Average detections: 5.6

Median detections: 6


% relative standard deviation: 38.5%


71 of 75 samples had BOTH atrazine & metolachlor present

Summary of Approach

Toxic Unit Approach

• Concentrations of toxicants expressed in units of lethality or in units of effect (LD50, LC50 or EC50)

- Chemical A has LD50 of 100 μ M. So 1 TU=100 μ M
- Chemical B has a LD50 of 50 μ M. So 1 TU=50 μ M
- A study examining $0.5TU_A + 0.5TU_B = 1TU_{A+B}$
 - > So expect 50% mortality (1 TU)with this mixture containing 50 μM A and 25 μM B

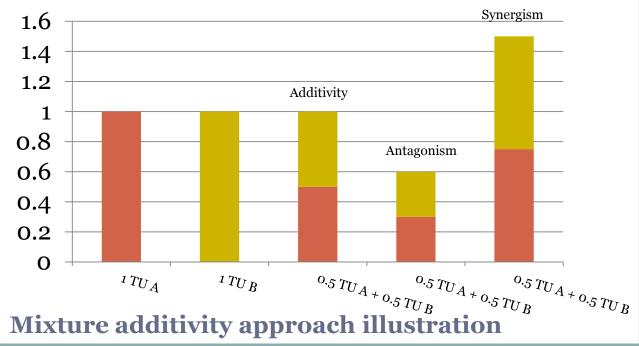
Toxic Units (TU)

Given a mixture of 0.5 TU A + 0.5 TU B,

The joint toxic effect of A and B is then defined as:

- Additive • if EC_{50mix} = 1 TU
- More than additive \circ if EC_{50mix} < 1 TU
- Less than additive
 if EC_{50mix} > 1 TU

Toxic Units in a mixture study


It is expected that

 0.5 TU_{A} + 0.5 TU_{B} = 1 TU_{A+B}

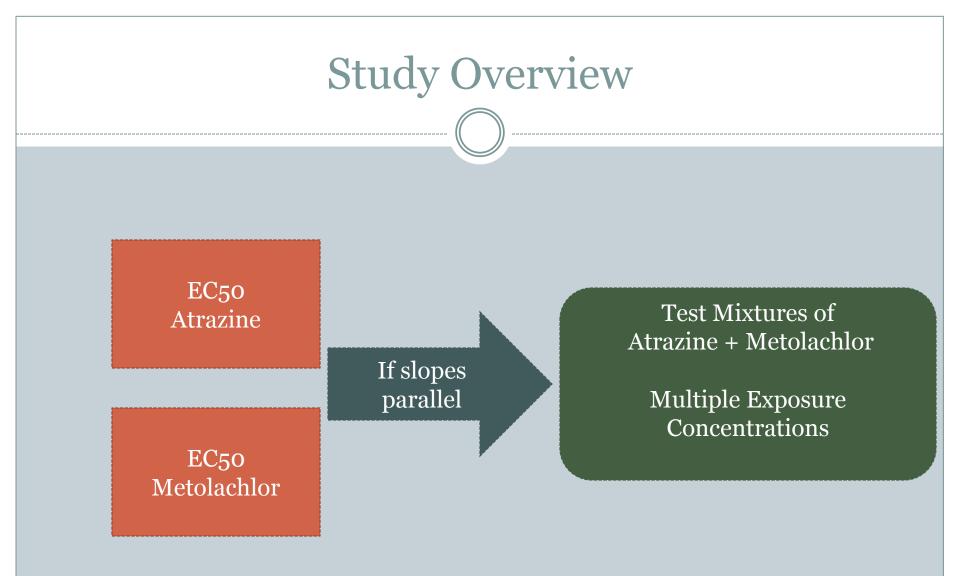
The mixture additivity approach uses the additive index (S) of Marking & Dawson (1975) :

$$S = A_m / A_i + B_m / B_i$$

Where $A_m \& B_m$ are the incipient EC50 of toxicants A & B when present in mixture, and $A_i \& B_i$ the toxicity of A & B when tested separately.

Objective **To determine the** effects of atrazine and metolachlor on aquatic macrophyte growth, reproduction, and health

Methods



Duckweed was used as the test subject

Lemna minor in culture

Test conditions

- Glass vessels with lids
- 150 ml:
 - 20% stock Hoaglands media
 - 80% MHW
 - Pesticide dilutions added directly to vessel
- n = 4, 12 fronds per vessel
- Moved every other day
- 12 h light-12 h dark cycle
- Approximately 25° C
- 6 days exposure

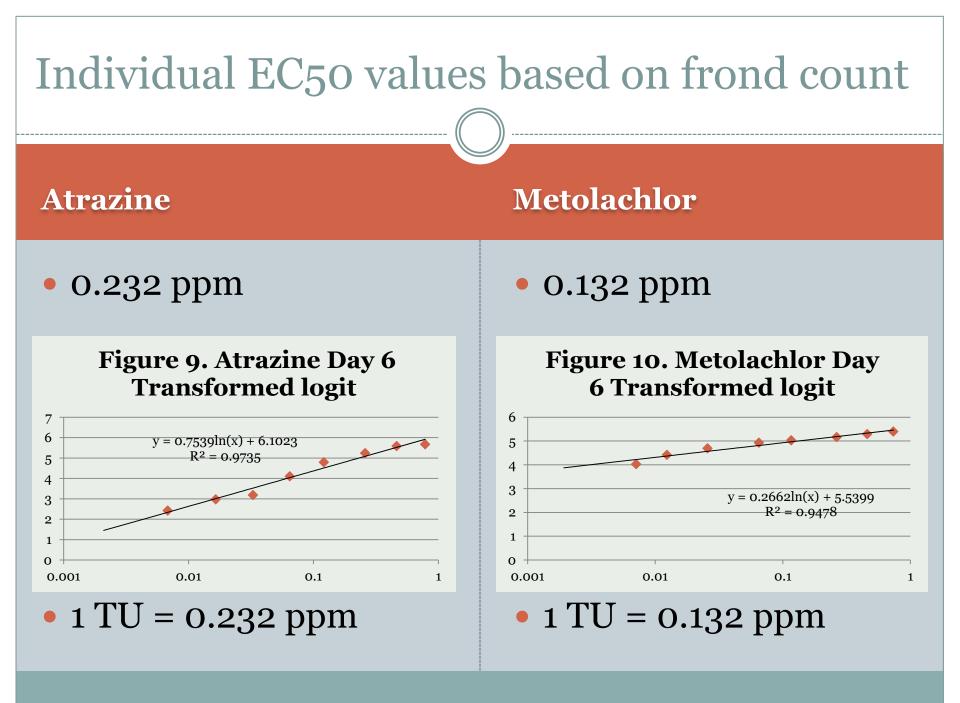
Concentrations Confirmed by GC-TSD

Percent recoveries in individual tests:

- Atrazine: 88% 113%
 Metolachlor: 80% 108
- Percent recoveries in mixture tests:
 - Atrazine: 100 107%
 Metolachlor: 109 118%

Measured End Points

- Frond count (every 2 days)
- Root length (end of exposure only)
- Fresh weight (end of exposure only)
- Photosynthetic efficiency (Fv/Fm; end of exposure only)
- Chlorophyll & Carotenoid concentration (end of exposure only)


Culture dishes growing *Lemna minor*.

Slope Analysis

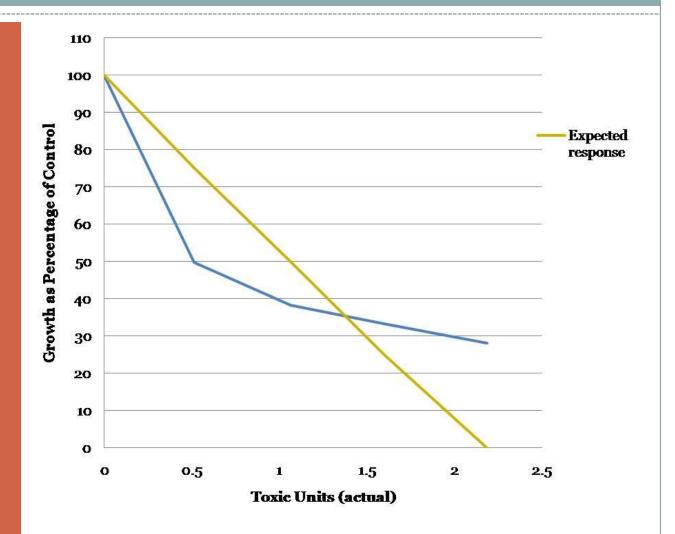
Source of Variation	df	SS _Y	SP _{XY}	SS _X	b _{Y·X}	$SS_{\hat{Y}}$	df	$SS_{Y \cdot X}$	$MS_{Y \cdot X}$
Atrazine	7	11.21238	1.982184	0.533019	3.718789	7.371322	6	3.841058	0.640176
Metolachlor	7	1.51306	0.667215	0.484618	1.376786	0.918612	6	0.594449	0.099075
Sum of Groups							12	4.435506	0.369626
Among b _i 's							1	1.392271	1.392272
									Fs = 3.76671 ns
Pooled within	14	2.649398	2.649398	1.017636	2.603482	6.897662	13	5.827778	0.448291

•Conclusion: Slopes are not statistically different; we can compare the individual compounds in a mixture study

Corrected Toxic Units for Mixtures

Combination	Measured Concentration	Measured Concentration	Total TU _{mix}
	Atrazine	Metolachlor	
0 + 0 TU (0 TU)	0 (0 TU)	0 (0 TU)	0 TU
0.25 + 0.25 TU (0.5 TU)	0.058 (0.25 TU)	0.036 (0.27 TU)	0.52 TU
0.5 + 0.5 TU (1 TU)	0.124 (0.53 TU)	0.072 (0.54 TU)	1.07 TU
0.75 + 0.75 TU (1.5 TU)	0.183 (0.79 TU)	0.11 (0.83 TU)	1.62 TU
1 + 1 TU (2 TU)	0.241 (1.04 TU)	0.156 (1.18 TU)	2.22 TU

Toxic Units and the mixture study


It is expected that

0.5 TU atrazine +

0.5 TU metolachlor

= 1 TU mixture

(50% growth rate of control)

Growth rate of *Lemna minor* as a percentage of controls in a mixture of atrazine and metolachlor.

Toxic Units and the mixture study

It is expected that

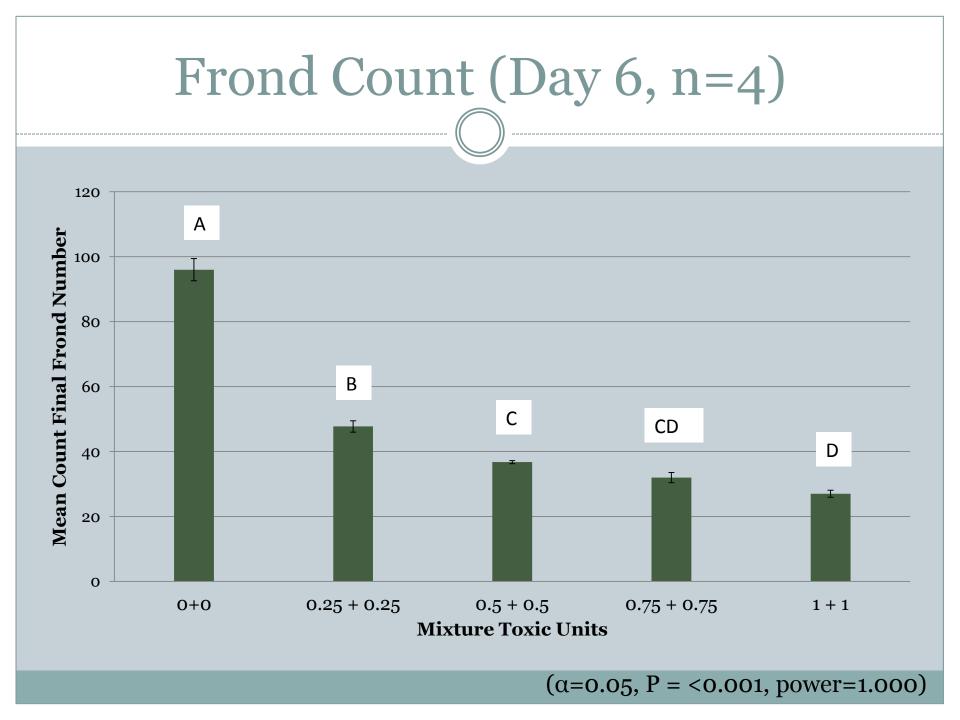
0.5 TU atrazine +

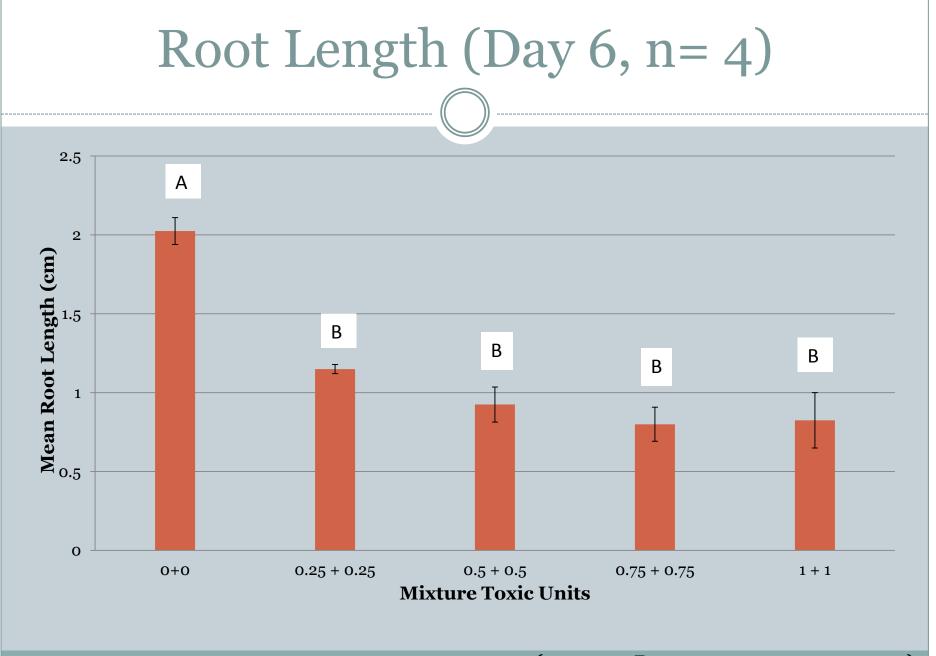
0.5 TU metolachlor

= 1 TU mixture

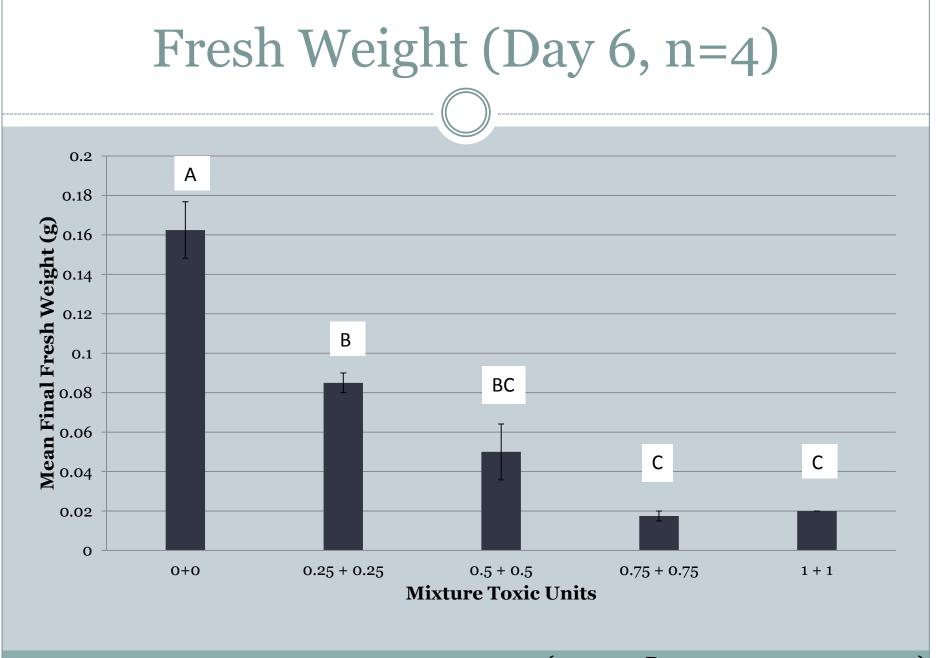
(50% growth of control)

S was calculated using the mixture additivity approach and the additive index of Marking & Dawson (1975)

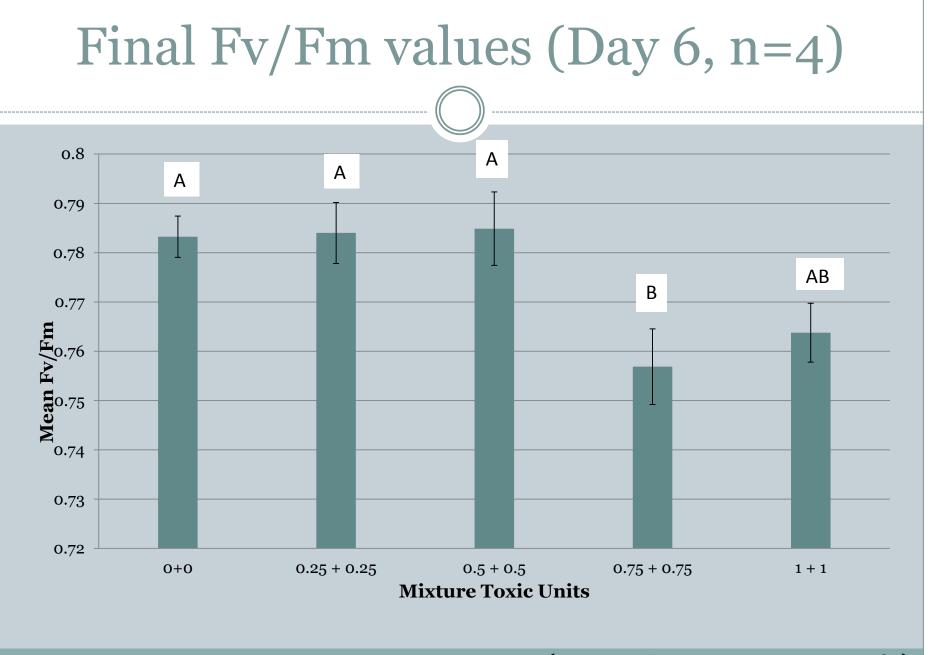

 $S = A_m/A_i + B_m/B_i$

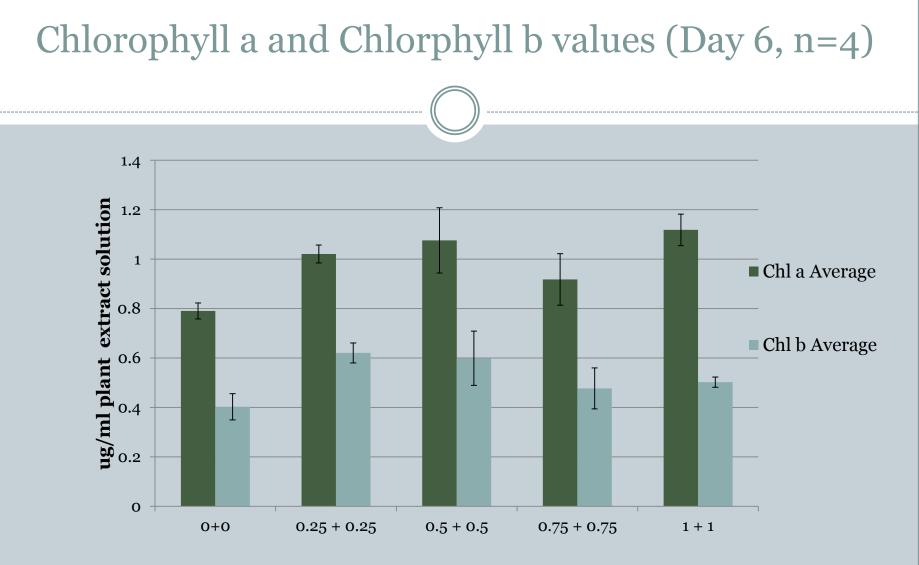

Where $A_m \& B_m$ are the incipient LC50 of toxicants A & B when present in mixture, and $A_i \& B_i$ the toxicity of A & B when tested separately.

For atrazine and metolachlor mixture:

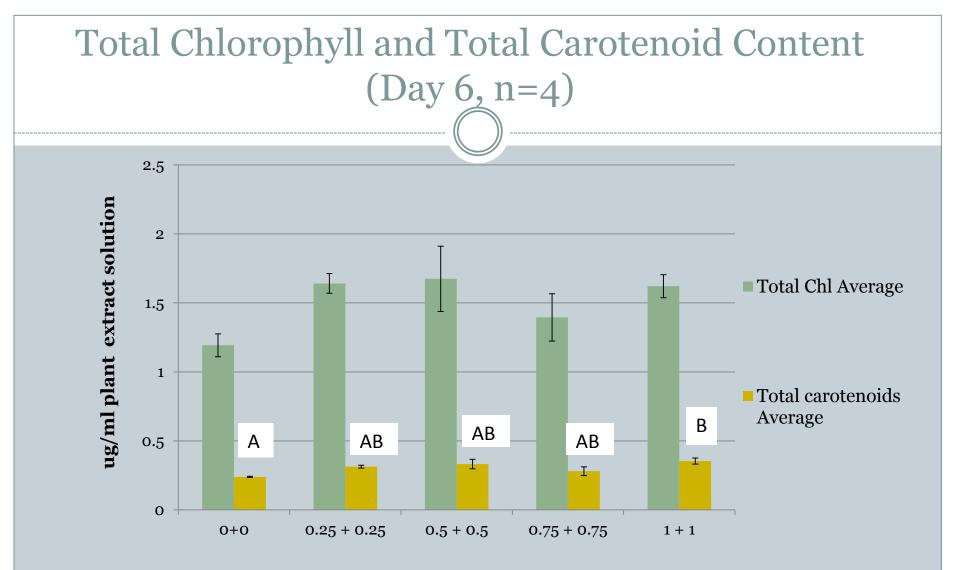

S= 1.05

indicating a <u>synergistic relationship</u> between the toxicants.




 $(\alpha = 0.05, P = < 0.001, power = 1.000)$

 $(\alpha = 0.05, P = < 0.001, power = 1.000)$



 $(\alpha = 0.05, P = 0.007, power = 0.781)$

Mixture Toxic Units

p= 0.086 and p=0.211



Mixture Toxic Units

Morphology effects

Control culture

In 0.75 ppm Metolachlor

Conclusions

Conclusions: Mixture effects of Atrazine & Metolachlor on *Lemna minor*

Synergistic effects

• Growth rate

Significant effects

- Frond count
- Root length
- Fresh weight
- Carotenoid content

No trend effects

- Chlorophyll a & b content
- o Fv/Fm

Acknowledgements

- Dr. P. Chris Wilson
- Dr. Samira Daroub
- Dr. Cathleen Hapeman
- Dr. Zhenli He
- Dr. Steve Roberts
- Youjian Lin, Ryan Hamm
- Jennifer Harman-Fetcho, Chris Lasser

Any Questions?